From12, an effective $\psi^2\phi^3$ operator may modify the Higgs-fermion coupling:
$$g_{Hf} = \sqrt{2}\frac{m_f}{v} + \frac{\alpha v^2}{\Lambda^2}$$
where $m_f$ is the fermion mass, $\Lambda$ is the scale of the new physics, $v$ is the Higgs vacuum expectation value, ~246 GeV/c$^2$, and $\alpha$ is the "Wilson Coefficient" or effective coupling strength.
Coupling scale-factor:
$$k_f = 1 + \frac{\alpha v^3}{\sqrt{2}m_f\Lambda^2}$$
Scale Factor on production rate:
$$\mu = k_f^2$$
New physics mass scale for a given $k_f$:
$$\Lambda = \sqrt{\frac{\alpha v^3}{\sqrt{2} m_f ( k_f - 1 )}}$$
From3,
Scale factor on the production rate or decay width:
$$\mu = \left\| 1 - \frac{8 \pi^2 v^2 c_G }{ \Lambda^2 I^g } \right\|^2 + \left\| \frac{8 \pi^2 v^2 \tilde{c}_G }{\Lambda^2 I^g } \right\|^2$$
where all variables are as in the above section, but $c_G$ and $\tilde{c}_G$ are the Wilson Coeffecients for the CP-conserving and CP-violating effective interactions respectively. $I^g$ is the amplitude for the top loop, which can be approximated for $m_t\rightarrow\infty$ as:
$$\frac{1}{I^g} = 2.76 - 6.37 \times 10^{-2} \left(\frac{m_H}{100 \mathrm{GeV}}\right)^2$$
Note that for the CP-conserving part, $c_G<0$ yields an increase in the rate, while $c_G>0$ decreases the rate.
The scale of new physics, $\Lambda$, can then be parameterized in terms of the coupling modifier $k_g = \sqrt{\mu}$. If only the CP-conserving interaction is involved:
$$\Lambda = \sqrt{\frac{8\pi^2 v^2 c_G}{I^g (k_g-1)}}$$
Similar to the Higgs-gluon case, and from the same reference:
$$k_\gamma^2 = \left\| 1 - \frac{4 \pi^2 v^2 c_{\gamma\gamma}}{ \Lambda^2 I^\gamma } \right\|^2 + \left\| \frac{4 \pi^2 v^2 \tilde{c}_{\gamma\gamma} }{ \Lambda^2 I^\gamma } \right\|^2$$
where $c_{\gamma\gamma}$ is the Wilson coefficient for the CP-conserving operator and $\tilde{c}_{\gamma\gamma}$ is the Wilson Coefficient for the CP-violating operator. $I^\gamma$ is the amplitude for the loop, in which both top and W are important, which can be approximated as:
$$\frac{1}{I^\gamma} = -0.85 + 0.16\left(\frac{m_H}{100 \mathrm{GeV}}\right)^2$$
The scale of new physics, $\Lambda$, can then be parameterized in terms of the coupling modifier $k_\gamma = \sqrt{\mu}$. If only the CP-conserving interaction is involved:
$$\Lambda = \sqrt{\frac{4\pi^2 v^2 c_{\gamma\gamma}}{I^\gamma (k_\gamma-1)}}$$
From 4, reading off the 95% CL upper limit from the profile-likelihood scan plots at $-2\Delta\ln\mathcal{L}=2.7$. The $k_\mu$ values are my estimates, assuming the $H\rightarrow \mu\mu$ sensitivity to be similar to the $t\bar{t}H$ sensitivity.
$k_V$ | $k_b$ | $k_\tau$ | $k_t$ | $k_g$ | $k_\gamma$ | $k_\mu$ (Assuming $\sim k_t$) | |
---|---|---|---|---|---|---|---|
95% Upper Limit | 1.33 | 2.1 | 1.65 | 3 | 1.5 | 1.43 | 3 |
$k_W$ | $k_Z$ | $k_b$ | $k_\tau$ | $k_t$ | |
---|---|---|---|---|---|
95% Upper Limit | 1.33 | 1.48 | 1.95 | 1.65 | 1.3 |
From5, systematics scenario 1, $1\sigma$ uncertainties. The $k_\mu$ values are my estimates, assuming the $H\rightarrow \mu\mu$ sensitivity to be similar to the $t\bar{t}H$ sensitivity.
Luminosity fb$^{-1}$ | $k_\gamma$ | $k_g$ | $k_b$ | $k_t$ | $k_\tau$ | $k_{\mu}$ (Assume $\sim k_{t}$) |
---|---|---|---|---|---|---|
300 | 7% | 8% | 13% | 15% | 8% | 15% |
3000 | 5% | 5% | 7% | 10% | 5% | 10% |
These are computed from the above $1\sigma$ uncertainties assuming Gaussian errors.
Luminosity fb$^{-1}$ | $k_\gamma$ | $k_g$ | $k_b$ | $k_t$ | $k_\tau$ | $k_{\mu}$ (Assume $\sim k_{t}$) |
---|---|---|---|---|---|---|
300 | 1.12 | 1.13 | 1.21 | 1.25 | 1.13 | 1.25 |
3000 | 1.08 | 1.08 | 1.12 | 1.17 | 1.08 | 1.17 |
Assuming unit Wilson coefficients for fermions. Wilson coefficients for gluon effective interaction are assumed to be -1 and 0 for CP-conserving and 0 CP-violating interactions, respectively. For the photon effective interaction, the CP-conserving wilson coefficient is assumed to be 1, and the CP-violating coefficient 0.
Higgs-X Coupling | 95% CL Lower Limit on Effective Mass Scale TeV/c$^2$ |
---|---|
$b$ | 1.5 |
$\tau$ | 3.0 |
$t$ | 0.15 |
$g$ | 5.0 |
$\gamma$ | 1.8 |
$\mu$ $(k_\mu \sim k_t)$ | 7.1 |
Assuming unit Wilson coefficients.
Higgs-X Coupling | 95% CL Lower Limit on Effective Mass Scale TeV/c$^2$ |
---|---|
$b$ | 1.6 |
$t$ | 0.45 |
Assuming unit Wilson coefficients for fermions. Wilson coefficients for gluon effective interaction are assumed to be -1 and 0 for CP-conserving and 0 CP-violating interactions, respectively. For the photon effective interaction, the CP-conserving wilson coefficient is assumed to be 1, and the CP-violating coefficient 0.
95% CL Lower Limit on Effective Mass Scale TeV/c$^2$
Higgs-X Coupling | 300 fb$-1$ | 3000 fb$-1$ |
---|---|---|
$b$ | 3.5 | 4.6 |
$\tau$ | 6.8 | 8.6 |
$t$ | 0.49 | 0.60 |
$g$ | 9.9 | 13 |
$\gamma$ | 3.5 | 4.2 |
$\mu(k_\mu\sim k_t)$ | 20 | 24 |
Instead of assuming unit couplings, one may assume the effective mass scale equal to $v=246$ GeV/c$^2$, the electroweak symmetry breaking scale, and then extract limits on the couplings. In this case:
$$c_f' = \sqrt{2}(k_f-1)\frac{m_f}{v}$$
$$c_g' = \frac{I^g(k_g-1)}{8 \pi^2}$$
$$c_{\gamma\gamma}' = \frac{I^\gamma(k_\gamma-1)}{4\pi^2}$$
CP-Odd coefficients assumed zero.
Higgs-X Coupling | 95% CL Lower Limit on Effective Coupling |
---|---|
$b$ | |
$\tau$ | |
$t$ | |
$g$ | |
$\gamma$ | |
$\mu$ $(k_\mu \sim k_t)$ |
CP-Odd coefficients assumed zero.
Higgs-X Coupling | 95% CL Lower Limit on Effective Coupling |
---|---|
$b$ | |
$t$ |
CP-Odd coefficients assumed zero.
95% CL Lower Limit on Effective Coupling
Higgs-X Coupling | 300 fb$-1$ | 3000 fb$-1$ |
---|---|---|
$b$ | ||
$\tau$ | ||
$t$ | ||
$g$ | ||
$\gamma$ | ||
$\mu(k_\mu\sim k_t)$ |
K. Matchev helped update with the newer definition of the Higgs vev (v=246 GeV/c$^2$), with $\phi = (0,h+v)/\sqrt{2}$. In the citation, $\phi = (0,h+v)$ ↩
CMS-NOTE-13-002, http://arxiv.org/abs/1307.7135v1; ECFA Talk by Bill Murray 2013-10-01 ↩